 # Number - Long Division

a - answer    s - solution    v - video    d - discussion

## Question 1

Use long division to answer these questions

a) $356\div2$a s v d
b) $7832\div2$a s v d
c) $620\div4$a s v d
d) $145\div5$a s v d
e) $182\div7$a s v d
f) $201\div3$a s v d
g) $4275\div9$a s v d
h) $1474\div11$a s v d

## Question 2

Use long division to answer these questions. Any remainders should be in the form $6r3$.

a) $271\div6$a s v d
b) $1872\div5$a s v d
c) $2981\div7$a s v d
d) $5424\div8$a s v d
e) $41\,207\div9$a s v d
f) $3754\div10$a s v d
g) $2808\div12$a s v d
h) $12\,782\div11$a s v d

## Question 3

Use long division to answer these questions. Any remainders should be written in a fraction, e.g. $2\frac13$.

a) $1495\div4$a s v d
b) $4069\div6$a s v d
c) $2779\div8$a s v d
d) $3008\div3$a s v d
e) $6746\div5$a s v d
f) $4080\div8$a s v d
g) $9874\div7$a s v d
h) $45\,076\div9$a s v d

## Question 4

Use long division to answer the following. You may want to 'cancel' down the division first. Leave an remainders in the form $5r2$

a) $5026\div14$a s v d
b) $8752\div16$a s v d
c) $3748\div18$a s v d
d) $4896\div24$a s v d
e) $2940\div15$a s v d
f) $74\,140\div110$a s v d
g) $8745\div55$a s v d
h) $8370\div45$a s v d

## Question 5

Use long division to answer the following. It is a good idea to write out the 'times tables' for the divisor to help.

a) $8814\div13$a s v d
b) $14\,688\div17$a s v d
c) $10\,203\div19$a s v d
d) $10\,062\div13$a s v d
e) $5678\div17$a s v d
f) $13\,319\div19$a s v d
g) $22\,563\div23$a s v d
h) $212\,889\div29$a s v d

## Question 6

Use long division to answer the following. It is a good idea to write out the 'times tables' for the divisor to help. Any remainders leave in the form $55\frac27$

a) $5999\div16$a s v d
b) $37\,433\div15$a s v d
c) $12\,789\div19$a s v d
d) $11\,407\div21$a s v d
e) $26\,917\div32$a s v d
f) $215\,273\div22$a s v d
g) $1\,139\,342\div13$a s v d
h) $183\,182\div27$a s v d

## Question 7

Use long division to answer these questions. Any remainders should be in the form $6r3$. Think about any short cuts you may be able to take.

a) $6606\div18$a s v d
b) $7284\div17$a s v d
c) $16\,006\div19$a s v d
d) $990\div22$a s v d
e) $21\,936\div48$a s v d
f) $61\,194\div78$a s v d
g) $32\,913\div53$a s v d
h) $44\,230\div93$a s v d
i) $19\,032\div244$a s v d
j) $43\,589\div479$a s v d
k) $93\,832\div124$a s v d
l) $2\,924\,778\div786$a s v d